Шрифт:
Если подходить формально и считать, что сердце, как впервые в 1628 году написал древнеримский врач и анатом В. Гарвей, не что иное, как насос, перекачивающий кровь, то даже эта его функция уже настолько важна и уникальна, что дает право относиться к нему с должным уважением.
Работая без устали, сердце в течение всей жизни перекачивает кровь и днем и ночью. Почему оно не устает и не останавливается? Откуда оно знает, с какой скоростью сокращаться и когда менять свой ритм? Что заставляет его поддерживать общий объем циркулирующей крови равномерно в артериальном и венозном руслах? Таких вопросов можно задать десятки.
До 50-х годов нашего столетия ответ на все вопросы был однозначен: регуляция деятельности сердца осуществляется нервно-рефлекторными механизмами. И это правда. Но только ли ими? И все ли проявления сердечной деятельности контролируются нервной системой? Ведь, например, для поддержания кровяного давления на строго определенном уровне необходимо участие, наряду с внутренними механизмами самого сердца, и клеток надпочечника и канальцевого аппарата почек. Но ведь трудно даже представить существование такой сложной (и просто длинной!) рефлекторной дуги, которая бы замыкала сердце через надпочечники с почками. Сама собой напрашивалась гипотеза о существовании в сердце какого-то химического фактора, участвующего в регуляции объема циркулирующей крови, давления крови, выведении из организма натрия, калия и воды. Косвенно об этом свидетельствовал и факт увеличения выведения из организма натрия и воды при растяжении верхних отделов сердца у экспериментальных животных.
Если химический фактор, обладающий биологической активностью, в сердце существует, то где он может находиться? Подозрение стали вызывать описанные в 60-х годах нашего века американцами Б. Кишем, Дж. Джеминсоном и Дж. Паладе электронно-плотные гранулы в мышечных клетках предсердий, очень похожие на секреторные гранулы эндокринных клеток. И действительно, при проведении тщательных сравнительных исследований в 1974 году группа канадских ученых из университета в Монреале во главе с M. Кантеном и Ж. Жене установила структурное сходство этих гранул с эндокринными гранулами апудоцитов гипофиза и поджелудочной железы.
Если химический фактор, обладающий биологической активностью, в сердце существует, то где он может находиться?
Проведенные авторадиографические исследования с введением в организм животных меченых аминокислот позволили установить пептидную природу этих гранул. Не имея подходов к прямой идентификации пептидного гормона, синтезируемого в гранулах предсердий, исследователи предприняли "обходной маневр" - решили посмотреть, существует ли зависимость между изменением количества секреторных гранул в миокардиальных клетках и такими важными физиологическими процессами для саморегуляции деятельности сердца, как выведение из организма воды и натрия. Эксперименты подтвердили такую связь: сотрудник Парижского университета П. Атт в 1976 году обнаружил увеличение количества гранул в мышечных клетках сердца при гипонатриевой диете животных, а в 1981 году в Королевском университете Кингстона (Канада) А. де Болд и X. Зонненберг установили быстрое, кратковременное, но значительное увеличение диуреза (выведения жидкости из организма) и натрийуреза у крыс с введенным гомогенатом предсердий других крыс. Пептидный фактор, содержащийся в гомогекате, решили назвать предсердным натрийурическим фактором (ПНФ). Таким образом, впервые появились основания считать сердце эндокринным органом. Уже упоминавшиеся нами Марк Кантен и Жак Жене так и назвали свою статью о ПНФ, опубликованную в журнале "Scientific American", "Сердце - эндокринная железа".
Познакомившись накоротке с новым гормоном, ученые решили детально разобраться с его родословной и способностями. В июне 1983 года M. Каитен, Ж. Жене и Р. Натт сумели выделить, очистить и впоследствии синтезировать ПНФ. Он оказался полипептидом, состоящим из 28 аминокислотных остатков. Совсем недавно был идентифицирован геи, кодирующий синтез ПНФ, налажен биотехнологический выпуск этого гормона и моноклональных антител к нему. Получение специфических антител к ПНФ дало возможность в короткие сроки изучить распределение ПНФ в организме человека и животных и оценить его биологические эффекты.
Клетки, вырабатывающие ПНФ, не являются истинно эндокринными. Это - кардиомиоциты (мышечные клетки предсердий), которые в процессе своего развития приобрели специфическую функцию эндокринных клеток - способность синтезировать гормоны. Подобные кардиомиоциты - не единственный и далеко не уникальный пример клеток-сфинксов, или, как их еще называют, клеток-химер, сочетающих одновременно структурные и функциональные черты клеток различных тканевых типов. Мы уже упоминали о том, что способность к синтезу гормонов присуща и остеобластам (костным клеткам), и гепатоцитам - клеткам печени, и некоторым клеткам крови - моноцитам, тромбоцитам, эозинофилам, лимфоцитам. Это не случайно. Тем самым проявляются ауторегуляторные свойства клеточных структур - заложенный природой механизм их быстрой (иногда моментальной) адаптации к изменяющимся условиям существования. Кардиомиоциты, синтезирующие ПНФ, - прекрасный пример проявления природой той функциональной разумности, которая не перестает поражать ученых и конструкторов. Признавая это, они создали особую науку - бионику, разрабатывающую технологические механизмы на основе устройства и функционирования биологических систем.
Саморегуляция работы сердца - "вечного двигателя" человеческого организма, далеко еще не познана. Во многих странах и лабораториях группы различных специалистов разгадывают его тайны. Настойчивость и целеустремленный поиск способствуют успеху. Открытие ПНФ - еще один важный этап в этом неустанном поиске.
Итак, ПНФ находится в секреторных гранулах мышечных клеток предсердий. Обладая важными биологическими свойствами - способностью менять ритм деятельности сердца через иоино-натриевые механизмы, которые, в свою очередь, включают целую цепь обменных процессов, он, как верный страж порядка в организме, готов в любую минуту по первому зову прийти на помощь. Что же служит сигналом к его выбросу в кровь и началу его деятельности? Пусковым фактором, как установили ученые, является растяжение кардиомиоцитов. Как только увеличивается объем циркулирующей крови в силу различных причин (например, при физических нагрузках, эмоциональных переживаниях - прилив крови при волнениях, родовой деятельности и т. п.), сразу увеличивается концентрация ПНФ в крови. Причем это повышение довольно значительно. Так, у экспериментальных животных при создании стрессорной ситуации уровень ПНФ возрастает в 10-20 раз, у больных сердечными пороками с увеличенным объемом циркулирующей крови концентрация ПНФ в крови повышается в 6-8 раз.
Увеличение содержания ПНФ сразу же влечет за собой уменьшение концентрации натрия в содержимом почечных канальцев, что, в свою очередь, стимулирует выработку почками особого гормона - ренина, который ответственен за изменение уровня артериального давления. Патология выработки ренина лежит в основе многих форм гипертонической болезни, особенно развившейся в молодом возрасте. Кардиомиоциты, регулируя выработку ПНФ, "следят" за изменением концентрации ренина и тем самым контролируют уровень артериального давления в организме.