Шрифт:
Вырисовывается такая методика поиска: вооружаемся приемником с рядом узких и широких полос пропускания; диапазон его рабочих волн должен лежать в области минимума космических помех. Приемником этим обследуем сначала участки в области естественных стандартов частоты (с учетом эффекта Допплера), как наиболее вероятные для использования, затем уже весь диапазон.
Ох, и нелегкая эта работа — найти в море-океане золотую рыбку!
А может, нам сигналят не радиоволнами, а световыми пучками лазера? И погружать невод нужно не в радио-, а в световые волны?
Ведь милый световой зайчик таит, как мы установили, колоссальные возможности. Он может транспортировать информацию в десятки тысяч раз большую, чем радиоволна. Этот узкий, почти параллельный пучок когерентного света, казалось бы, может пронзить любые просторы космоса. Так ли это?
Источник когерентного излучения в лазере, например кристалл, имеет, к сожалению, не бесконечно малые, а конечные размеры. В параллельный же пучок, как доказывается в оптике, можно собрать только излучение точечного источника, то есть источника, имеющего исчезающе малые размеры. Но чем большую мощность луча мы хотим получить, тем больше должны быть размеры излучателя. Следовательно, с надеждой получить от большого лазера абсолютно параллельный пучок света, который не рассеивает свою энергию в пространстве, мы должны проститься.
Вместе с тем лазер позволяет получить очень узкие пучки направленного излучения; в сотни раз более узкие, чем в радиодиапазоне. Раствор когерентного светового пучка лазера может быть сделан порядка десяти секунд, а используя оптические линзы, его можно довести до единиц секунд. Главный же лепесток антенны в сантиметровом радиодиапазоне можно сделать только порядка одного градуса. Следовательно, лазерная установка с оптикой способна сконцентрировать энергию в нужном направлении приблизительно в 300 раз сильнее, чем радиоустановка.
Но не только концентрация войск в направлении удара решает операцию. Не меньшее значение имеет также концентрация войск противника на этом же направлении; в нашем случае — концентрация помех.
Как же выглядит единоборство лазерного сигнала и помех в мире света? Скажем прямо: хуже, чем в радиодиапазоне. Здесь помехи еще сильней наседают на сигнал. Посылающая нам световой привет и информацию игрек-цивилизация, можно сказать, находится в самом логове врага. Ведь она развилась и находится под благодатными лучами своей звезды, своего игрек-солнца. А это же гигантский источник световых помех. Его свет и есть колоссальная помеха для разумных световых сигналов. Звезда излучает свет во всех направлениях (у нее вполне хватает энергии для этого) и во всем световом спектре — от инфракрасного до ультрафиолетового. Значит, куда ни кинь — всюду клин. Куда бы и на какой бы волне ни излучал лазер, вместе с его лучами будут спешить и помехи — лучи родной звезды. Луч лазера будет тонуть в них. И наш земной приемник световых сигналов будет ослеплен звездой. Он не различит слабый искусственный сигнал так же, как днем солнечный свет ослепляет нас и мы не видим звезд на небе.
В более выгодном положении оказываются «дети тьмы», обитатели померкших звезд — черных карликов. Они не знают радости «с песней встречать свое солнце» рано утром и задумчиво провожать его вечером. Зато у них нет и световых помех. Но существование их, как мы уже говорили, весьма проблематично.
Однако не следует падать духом. Есть все-таки у лазера возможность перехитрить помехи. В спектре излучения любой звезды есть провалы: участки, где практически нет излучения. Это так называемые линии поглощения. Величественная газовая корона звезды сама поглощает излучение на некоторых частотах, и в спектре ее света образуются как бы ямы. Вот в этих ямах и может обосноваться луч лазера. Так как его излучение когерентно, то оно значительно 'yже этих световых ям и не будет сливаться с излучением ее краев.
Приемник такого излучения должен иметь световой фильтр, пропускающий свет лазера только из «ямы» и поглощающий излучение соседних участков спектра звезды. (Надо заметить, что проблема построения таких фильтров еще полностью, к сожалению, не разрешена.)
Кроме того, враг номер один, как нам теперь известно, свивает гнездо в самом приемнике: приемник всегда шумит (подобно некоторым землянам). Не миновала эта горькая доля и приемники когерентного света лазера.
Наиболее распространенным приемником световых колебаний является так называемый фотоэлектронный умножитель (ФЭУ). Умножителем он назван не случайно. Изобретательные земляне смастерили устройство, которое работает как таблица умножения. Входной луч, переходя от одной пластины к другой (их называют анодами), выбивает в несколько раз больше электронов из каждой из них, чем в падающем на пластину луче. Это дает в сумме гигантское умножение энергии входного сигнала и наводит на мысль, что таким прибором можно успешно ловить сигналы иных цивилизаций. Однако и он не лишен пороков.
Если исключить воздействие света на ФЭУ, например закрыть его входное окно непрозрачной пластинкой или рукой, то на его выходе все равно останется некоторый уровень хаотических колебаний (его часто называют темновой ток). Это и есть собственные шумы ФЭУ, а они, оказывается, значительно выше, чем собственные шумы приемников радиодиапазона.
Мешают работе приемников лазерного света и значительные галактические шумы. Миллиарды светящихся звезд в сумме создают заметный световой фон, который тоже воздействует на наши принимающие световые устройства.