Шрифт:
Лебедь Х-1, обнаруженный в 1965 году, был первым объектом, могущим быть проявлением черной дыры. Он представляет собой бинарную систему, состоящую, возможно, из вращающейся черной дыры и гигантской звезды. С тех пор в нашей Галактике идентифицированы два десятка черных дыр. Крупнейшая, Стрелец А*, массой до 4 млн солнц, расположена в центре Млечного Пути. Ее обнаружили в 2002-м при наблюдении орбит звезд вблизи центра нашей Галактики. На 2019 год намечен проект «Телескоп горизонта событий» — съемка участков вблизи горизонта этой центральной черной звезды методом сопоставления данных радиотелескопов, разбросанных по всей земной поверхности. Увидят ли они то, что показано в «Интерстелларе»? Этого никто не знает, но вычисления дают надежду[20].
Гаргантюа во всей красе
Хотя черная звезда не испускает свечения, ее можно зафиксировать по влиянию на ближнюю периферию, например, по вращающемуся вокруг нее диску материи. Разогреваемый вращением и порождаемым им внутренним трением, диск светится. Траектории лучей света испытывают воздействие искривленности пространства-времени, вызванной черной дырой. Предварительный математический анализ и его компьютерная обработка позволяют точно вычислить эти траектории и получить изображение, которое увидел бы удаленный наблюдатель.
Гаргантюа был рассчитан для фильма компанией «Дабл Негатив», специализирующейся на спецэффектах, с учетом рекомендаций американского физика Кипа Торна, тонкого знатока теории относительности и со-лауреата Нобелевской премии по физике 2017 года за работу с гравитационными волнами. Вопреки утверждениям создателей фильма, необыкновенной новизны в этом не было. Еще в 1979-м французский астрофизик Жан-Пьер Люмине, тоже специалист по черным дырам, опубликовал первые модели-изображения аккреционного диска вокруг черной дыры. В 1990-х его коллега Жан-Ален Марк предложил еще более реалистичные модели. Несколько лет назад другой астрофизик, Ален Риазуэло, получил методом вычисления изображение неба, которое предстало бы взору пассажиров корабля, находящегося на орбите черной дыры. Трудность здесь в том, что для подробного изображения необходимо рассчитать траектории большого количества световых лучей. С этой точки зрения работа «Дабл Негатив» превосходит сделанное предшественниками, так как в распоряжении компании были мощные компьютеры.
Расчетный аккреционный диск — это то, что увидел бы астронавт, находясь в плоскости диска (отсюда симметрия изображения по отношению к горизонтальной оси). Но при всех визуальных достоинствах и эстетике эта модель нереалистична, так как предполагает равномерное свечение поверхности диска. На самом же деле на нем должны быть разные температуры, а значит, разные варианты свечения в зависимости от расстояния до черной дыры. Кстати, температура аккреционного диска должна достигать нескольких десятков миллионов градусов, здесь же она явно гораздо ниже: при таких температурах излучение относилось бы к диапазону рентгеновских лучей и было бы незаметным для нашего глаза; герои фильма от него быстро погибли бы, а поверхность планеты Миллер была бы мертва. К тому же диск должен вращаться вокруг черной дыры со скоростями, близкими к скорости света, оказывая сильное релятивистское воздействие на свет, воспринимаемый удаленным наблюдателем. Прежде всего, эффект Доплера — Физо меняет спектр излучаемого материей света: он смещается к синему на ближней к наблюдателю стороне и к красному — на дальней. Затем явление угловой аберрации меняет видимое направление источника света, быстро смещающегося по отношению к наблюдателю. Это усиливает яркость приближающихся к наблюдателю участков диска и ослабляет яркость других. Поэтому аккреционный диск Гаргантюа должен был быть ярче и синее там, где он ближе к наблюдателю, и тусклее и краснее — дальше от него.
В фильме аккреционный диск показан «умеренно реалистично», без учета этих релятивистских эффектов: так пожелал сам Кристофер Нолан, решив, что асимметрия смутила бы зрителя. Но если черная дыра сильно влияет на окружающее световое поле, то она должна диктовать свои законы и приблизившимся к ней по неосторожности астронавтам.
Приближаясь к чудовищу
По соседству с черной дырой вы напрямую испытали бы изгиб пространства-времени: это приливные силы. Мы ощущаем их и на Земле, без труда наблюдая самое заметное их следствие — океанские приливы и отливы. В классической физике они происходят от колебания силы гравитации в зависимости от расстояния до притягивающего тела. Оказываясь в поле лунного притяжения, участки Земли, находящиеся под Луной, притягиваются ею немного сильнее, чем противоположное полушарие[21].
На Земле это выражается в вытягивании, ось которого направлена к Луне, и нагляднее наблюдается на примере легко деформируемых океанических масс. При этом две точки на Земле, расположенные на перпендикулярной «лунному» направлению прямой, сближаются, потому что вместе «падают» в направлении центра нашего спутника. Поэтому Земля и ее океаны сжимаются в направлении, перпендикулярном «лунному».
Применительно к черной дыре приливные силы порождаются различиями в изгибе пространства-времени и могут выглядеть гораздо более впечатляющими, чем происходящее на Земле. Падая ногами в направлении черной дыры, вы почувствовали бы вытяжение вдоль тела и сжатие в перпендикулярном направлении. Как ни странно, момент, с которого вытяжение становится невыносимым для человека (скажем, при разнице в ускорении, равной 10g), не зависит от размера дыры: он наступает где-то за десятую долю секунды до достижения центральной сингулярности. То, что эта продолжительность одинакова для всех черных дыр, означает, что человек будет буквально разорван приливными силами маленькой черной дыры массой всего в несколько солнц задолго до ее горизонта, радиус которой преодолевается за долю миллисекунды. Зато мы могли бы достигнуть живыми и невредимыми горизонта черной дыры массой в 10 тыс. солнц и даже исследовать внутренность гигантской черной дыры массой в 100 млн солнц… В последнем случае приливные силы на горизонте событий становятся слабее, чем те, неуловимые, которые действуют на нас на Земле. Тем не менее после пересечения горизонта вас неудержимо повлечет к центральной сингулярности и там, независимо от массы черной дыры, разорвет приливными силами, значения которых стремятся к бесконечности!
Какова масса Гаргантюа?
Тот факт, что планету Миллер, обращающуюся на орбите Гаргантюа, не уничтожают приливные силы черной дыры, позволяет довольно точно определить массу последней. Можно показать, что интенсивность приливного вытяжения обратно пропорциональна квадрату массы черной дыры. Иначе говоря, чем выше масса черной дыры, тем слабее приливные силы. С другой стороны, само существование планеты Миллер обеспечено ее гравитацией, сопротивляющейся приливным силам. Если бы вторые превзошли первую, планета развалилась бы. Так произошло с кометой Шумейкеров — Леви: в июле 1992 года ее раздавили приливные силы Юпитера, в который спустя два года врезались ее остатки.
Если считать плотность планеты Миллер близкой к плотности Земли, а высоту орбиты уподобить радиусу горизонта, то масса Гаргантюа составит не менее 200 млн солнечных масс. Цифра кажется колоссальной, и она именно такова, если помнить, что «обычная» черная дыра имеет массу порядка нескольких солнечных. Черная звезда такого типа, называемого «звездным», обычно появляется после взрыва очень массивной звезды. Черная дыра в центре нашей Галактики, имеющая массу 4 млн солнц, — карлик по сравнению с дырой массой в 200 солнц. Но в центре некоторых активных галактик — например, Мессье 87 — обнаружены черные дыры, массы которых значительно превышают миллиард солнц! По сравнению с ними наш Гаргантюа — настоящий середнячок. Остается нерешенная проблема: такие сверхмассивные черные дыры находят пока что только в центре галактик…