Вход/Регистрация
AutoCAD 2009
вернуться

Орлов Андрей Александрович

Шрифт:

– Compass (Компас) – изображение на экране дополнится тремя окружностями – X, Y и Z, расположенными во взаимно перпендикулярных плоскостях;

– Grid (Сетка) – в плоскости XY вырисовывается сетка; эта функция включена по умолчанию;

– UCS Icon (Знак ПСК) – добавляет на экран трехмерную пиктограмму ПСК.

Трехмерные координаты

Построение новых объектов всегда происходит путем задания координат. Как в двухмерном, так и в трехмерном пространстве для этого могут применяться различные методы. Правда, ввод трехмерных координат обладает некоторыми особенностями, которые мы и рассмотрим.

Ввод трехмерных координат

При построении трехмерных объектов можно использовать те же способы задания координат, которые применялись при двухмерном моделировании. Отличительной особенностью указания пространственных координат является лишь то, что к осям X и Y, используемым ранее, добавляется ось Z, проходящая перпендикулярно плоскости XY. Поэтому положение точек теперь будет определяться тремя координатами: x, y и z.

Что касается полярных координат, применяемых в двухмерных чертежах, то в трехмерном пространстве их аналогами являются цилиндрические и сферические координаты. Кроме того, задавать координаты можно и в интерактивном режиме, то есть указывая их непосредственно на чертеже с помощью мыши.

Декартовы координаты

В трехмерном пространстве декартовы координаты имеют формат @X,Y,Z. Прямоугольные координаты почти так же указывались и в двухмерном пространстве – только добавилась третья координата. Напомню, что символа @ может и не быть, тогда положение точки будет задано относительно начала текущей системы координат – абсолютные координаты. Если же этот символ присутствует, то задается положение точки относительно предыдущей, то есть в этом случае используются относительные прямоугольные координаты. В трехмерных чертежах чаще применяют именно относительные координаты.

При построении двухмерных чертежей нередко удобнее задавать не прямоугольные, а полярные координаты. В трехмерном же пространстве альтернативой декартовой системе координат служат сферические и цилиндрические координаты.

Цилиндрические координаты

Абсолютные цилиндрические координаты представляются в формате расстояние<угол,расстояние. В данной записи первое расстояние – это длина проекции на плоскость XY вектора, начинающегося в начале текущей системы и заканчивающегося в точке, координаты которой задаются. Угол указывает значение угла между осью X и упомянутой проекцией вектора на плоскость XY. Второе расстояние, которое вводится после запятой, – это смещение точки вдоль оси Z. Как видно, цилиндрические координаты отличаются от полярных лишь добавлением координаты z. Как задается точка с координатами 10<30,5, показано на рис. 9.10.

Рис. 9.10. Указание точки методом абсолютных цилиндрических координат

Если применяются относительные цилиндрические координаты, то перед предыдущей записью будет еще добавлен символ @. Тогда координата точки будет указываться путем смещения ее от предыдущей. Замечу, что при применении цилиндрических координат, как абсолютных, так и относительных, указываемые расстояния фактически представляют собой катеты прямоугольного треугольника.

Сферические координаты

Абсолютные сферические координаты представляются в следующем формате: расстояние<угол<угол. В данной записи расстояние – это длина вектора, который проходит от начала координат до указываемой точки. Первый угол отсчитывается от оси X до проекции вектора на плоскость XY. Еще одно значение угла, которое следует указать, – это угол между плоскостью XY и упомянутым вектором. Точка с координатами 5<30<45 показана на рис. 9.11.

Рис. 9.11. Указание точки методом абсолютных сферических координат

Сферические координаты также могут быть и относительными. В этом случае, как всегда, добавится знак @, а координата точки указывается путем смещения ее от предыдущей точки. Следует также отметить, что в отличие от цилиндрических координат, где расстояние до точки указывалось косвенным образом, в сферических координатах расстояние до точки указывается прямо.

Координатные фильтры

Координатные фильтры предназначены для указания координат комбинированным способом – выбором точки с помощью перекрестья на чертеже и вводом недостающих координат с клавиатуры. Существуют следующие фильтры точек: .X, .Y, .Z, .XY, .YZ и .XZ. Например, запись .XY означает, что координатыxи y вы сможете скопировать с чертежа, а координату z задать иным способом – вводом с клавиатуры. Допустим, необходимо указать точку, отстоящую от конца отрезка, который расположен в горизонтальной плоскости, в направлении оси Z на заданное расстояние. Делается это следующим образом.

  • Читать дальше
  • 1
  • ...
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: