Шрифт:
Основу второго начала термодинамики составляют постулаты. Первый постулат немецкого ученого Р. Клау-зиуса (1850 г.) представляет общую формулировку второго закона в таком виде: «От одного тела (менее нагретого) к другому (более нагретому) теплота не переходит самопроизвольно, а только с помощью компенсации». Другой постулат (лорда Кельвина-Томсона, 1852 г.) гласит, что невозможно создать тепловую машину – вечный двигатель второго рода (в котором теплота полностью переходит в работу). Отсюда следует, чтотепловой двигатель будет выполнять работу только при наличии не менее двух источников тепла с различными температурами. Причем только часть всей теплоты, выделенной теплоотдатчиком (источник теплоты, имеющий высокую температуру), возможно превратить в полезную работу. Остальное тепло отводится к теплоприемнику.
На практике самопроизвольные процессы (переход тепла от горячих к холодным телам, диффузии, явления растворения и многие другие) являются необратимыми. Поэтому существует еще одна формулировка второго закона термодинамики: «Если реальный процесс является самопроизвольным, то он необратим».
35. Термодинамический КПД и холодильный коэффициент циклов
Источники, имеющие высокую температуру (Т1) и отдающие теплоту рабочему телу, называются теплоот-датчиками. Источники, имеющие низкую температуру (Т2) и получающие теплоту от рабочего вещества, называются теплоприемниками.
На РУ-диаграмме полезная работа кругового процесса равна площади, образованной кривыми прямого и обратного хода процесса и заключенной внутри цикла. Если на графике линия расширения расположена над линией сжатия, направление цикла происходит по часовой стрелке и произведенная в процессе работа потребляется внешними устройствами, такой цикл является прямым. Если на диаграмме линия сжатия расположена выше линии расширения, направление цикла происходит против часовой стрелки и работа совершается с помощью внешнего источника, такой цикл является обратным.
Полезную работу двигателя возможно получить только в случае, когда работа расширения больше работы по сжатию. Преобразование теплоты в механическую работу является несамопроизвольным процессом и обязательно должно сопровождаться компенсацией.
Тепловые устройства считаются идеальными, если в них нет потерь. Цикл также считается идеальным, если образован только обратимыми явлениями. В тепловых двигателях оценку экономичности идеального прямого цикла называют термическим коэффициентом полезного действия. Он равен отношению теплоты, которая преобразовалась в ходе цикла в работу, ко всей подведенной теплоте и обозначается ht(«эта», греческая буква):
где 1ц – полезная работа;
q1 – подведенная теплота;
q2 – отведенная теплота. Внешняя работа при обратном цикле равна:
1ц = q1 – q2,
где q1– отведенная теплота к горячему источнику;
q2 – отведенная теплота от холодного источника.
Для обратного идеального цикла существует термин холодильного КПД, который обозначается t:
Можно сформулировать второй закон термодинамики таким образом: «В тепловом двигателе преобразование теплоты в механическую работу на 100% невозможно».
36. Обратный и обратимый цикл Карно
В термодинамических исследованиях практическое применение получило не только прямое, но и обратное направление цикла Карно. Отличие обратного цикла заключается в том, что теплота отводится от источника с низкой температурой и отдается источнику с высокой температурой. Такой цикл является идеальным для холодильных агрегатов.
Рабочее тело, участвующее в обратном цикле, называется холодильным агентом. При адиабатическом расширении температура снижается от значения 71 до величины Тт После этого при получении теплоты Я2 от холодного источника (Т2) газ изотермически сжимается. В следующем процессе происходит адиабатическое сжатие, и температура рабочего тела повышается от значения Т2 до величины Т1. При изотермическом сжатии теплота q1 отнимается от рабочего вещества и переходит к горячему источнику.
Холодильная машина работает по обратному циклу, на создание которого тратится удельное количество работы (I). В этом случае от холодного к горячему источнику передается q2 (количество теплоты), а горячий источник еще получает теплоту, численно равную произведенной работе I. Таким образом, полное количество теплоты, отведенное к горячему источнику, равно:
q1 = q2 + 1
Работа в процессе расширения положительна, а работа в процессе сжатия отрицательна. Полная работа, необходимая для передачи теплоты от холодного к горячему источнику, равна: