Шрифт:
I = q1 – q2
и отрицательна.
Холодильный коэффициент e характеризует производительность работы холодильных устройств и определяется отношением:
где q2 – количество теплоты, отведенной от холодного источника и полученной горячим источником;
I – совершенная работа.
Для обратного и обратимого цикла Карно холодильный коэффициент вычисляется с помощью соотношения:
37. Теорема Карно
Проведем краткий анализ формулы для термине-ского КПД обратимого прямого цикла Карно:
Из данного равенства следует:
1) термический КПД зависит только от значений температур горячего и холодного источников;
2) ht(для цикла Карно) тем больше, чем выше температура горячего источника (71) и чем ниже температура холодного источника (72);
3) в цикле Карно термический КПД обязательно должен быть меньше единицы. Так как ht= 1 может быть только в случае T2 / T1 = 0, когда T1 = 0, либо T2 = 0 (или T2 = -273,15 oC). Температура холодного источника 72 в реальных тепловых двигателях представляет собой обычно температуру T2 = 260 – 300 K (окружающей среды). Температура нагревателя в топке паросиловых установок равна примерно 2000 К, а в двигателях внутреннего сгорания – около 2500 К, так как в поршневых цилиндрах этих двигателей стенки охлаждаются, и рабочим веществом становятся именно продукты сгорания. Отсюда вытекает то же утверждение, что всю теплоту, подведенную к газу в ходе цикла, нельзя полностью превратить в полезную работу, этот переход обязательно должен сопровождаться потерей части теплоты (она поглощается холодным источником);
4) в цикле Карно термический КПД равен нулю в случае T1 = T2. Из этого следует, что если в системе поддерживается тепловое равновесие, т. е. температура всех тел системы одинакова, то преобразование теплоты в полезную работу невозможно. Для цикла Карно (прямого) верно: ht= 1 – T2/ T1 = 1 – 1 = 0 при T1 = t= T2 (в случае равенства температур обоих источников);
5) термический КПД t характеризует обратимый цикл Карно (круговой процесс). Все реальные процессы необратимы, это объясняется потерями энергии (из-за теплообмена, трения и др.). Поэтому термический КПД реального цикла Карно (необратимого) всегда меньше величины 1 – T2 / T1. Главной особенностью этого цикла является то, что он одинаков как для идеальных, так и для обычных реальных газов, если заданы температуры (T1, T2) источников. Это утверждение представляет собой сущность теоремы Карно, которая гласит: «В тепловом двигателе для всякого обратимого цикла термический КПД не будет зависеть ни от характера цикла, ни от рода вещества (рабочего тела)». Он будет определяться только отношением температур нагревателя (теплоотдатчика) и холодильника (теплоприемника). Другими словами, в тепловом двигателе для каждого обратимого цикла термический КПД вычисляется с помощью такой же формулы, которая определена для обратимого цикла Карно.
38. Изменение энтропии в процессах
Энтропией называется параметр состояния, который зависит от приведенной теплоты (отношение q /T). Изменение энтропии вычисляется по формуле:
где q1,2 количество теплоты, подведенной к рабочему телу или отведенной от него;
Tср – средняя температура подведенной (или отведенной) теплоты.
Это соотношение определяет изменение энтропии от начального значения энтропии S1 до конечного значения S2
1) при q1,2 > 0 (теплота подводится к рабочему телу) изменение энтропии положительно: S2– S1> 0, S2> S1, так как средняя термодинамическая температура должна быть всегда положительной, т. е. Tср > 0. Иными словами, энтропия тела возрастает;
2) при q1,2 < 0 (теплота отводится от рабочего тела) изменение энтропии отрицательно: S2– S1 <0, S2 < S1 т. е. энтропия тела снижается;
3) при q1,2 = 0 (адиабатический процесс) изменение энтропии равно нулю: S2 – S1= 0, S2 = S1 т. е. энтропия тела остается постоянной. Процесс, в ходе которого значение энтропии не меняется, называется изоэнтропийным.
Для идеального газа получаем следующие выводы.
1. При изотермическом процессе вместо Tср достаточно в уравнение энтропии подставлять значения температуры Т, так как T1= T2 = const.